
www.manaraa.com

Researching Crowdsourcing Software Development:
Perspectives and Concerns

Klaas-Jan Stol
Lero—the Irish Software Engineering

Research Centre
University of Limerick, Ireland

klaas-jan.stol@lero.ie

Brian Fitzgerald
Lero—the Irish Software Engineering

Research Centre
University of Limerick, Ireland

bf@ul.ie

ABSTRACT
Crowdsourcing is an emerging form of ‘outsourcing’ software de-
velopment. While there has been considerable research in the area
of crowdsourcing in general, very little research has focused specif-
ically on how crowdsourcing works in a software development
context, and as far as we know, there have been no published studies
of crowdsourcing software development from a customer perspec-
tive. Based on a review of the literature, we identified a number of
key concerns related to crowdsourcing that are of particular impor-
tance in a software development context. Furthermore, we observed
a number of recurring key stakeholders, or actors, each of whom
has a unique perspective on crowdsourcing. This paper presents
a research framework that consists of the various combinations of
stakeholders and key concerns. The framework can be used to guide
future research on the use of crowdsourcing as a ‘sourcing’ strategy,
as well as a means to review and synthesize research findings so
as to be able to compare studies on crowdsourcing in a software
development context.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software development, Software
process; D.2.8 [Software Engineering]: Management—Program-
ming teams; K.4.3 [Organizational Impacts]: Computer-supported
collaborative work

General Terms
Management

Keywords
research framework, crowdsourcing software development

1. INTRODUCTION
Crowdsourcing is gaining significant attention in the software

engineering research [4, 22, 24, 25]. Crowdsourcing has been
suggested as a useful approach in GUI testing [13], performance
testing [24] and even as a means to recruit participants in empirical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM /14/05 ...$15.00.

studies of software engineering [32]. There is an increasing level
of attention to social interactions and networks within software
engineering research [3], and ‘crowds’ are an important aspect of
this [6]. In this paper we are in particular concerned with using
crowds as an alternative form of sourcing, contrasting it with other
forms such as open-sourcing [1], inner-sourcing [30] and traditional
software outsourcing. In other words, how can a crowd, or ‘unknown
workforce’ effectively contribute to the development of a software
system?

Much research has focused on general-purpose crowdsourcing
platforms such as Amazon’s Mechanical Turk (AMT), for instance.
However, very little research exists on crowdsourcing software de-
velopment, in contrast to the topic of crowdsourcing in a more
general sense. We argue that there is significant potential in soft-
ware development through crowdsourcing, but that much research is
needed to better understand how to optimally do this. For instance,
we recently conducted an in-depth case study of a multinational
company that had crowdsourced a software project, but encountered
several unexpected challenges in doing so [31].

In order to guide future research on this topic we derived a re-
search framework for crowdsourcing software development. While
several authors have proposed taxonomies or research frameworks
for crowdsourcing [8, 10, 14, 16, 26, 28, 33], these are not fo-
cused specifically on software development, but rather provide gen-
eral classifications and characteristics of crowdsourcing in a more
general context. While such general classifications can be useful
when considering crowsourcing software development from a wider
perspective, we argue that crowdsourcing as a form of ‘sourcing’
software requires a dedicated framework to systematically study
this topic. This paper proceeds as follows: Section 2 presents our
research framework, Section 3 outlines how the framework can be
applied and Section 4 concludes this paper.

2. RESEARCH FRAMEWORK
Due to the specific intricacies of software development, crowd-

sourcing in a software context is different from other contexts, as
represented by, for instance, AMT. Clearly, this has implications for
what aspects of crowdsourcing should be studied in a software devel-
opment context. To that end, based on a traditional literature review
we identified a number of key concerns in crowdsourcing software
development. As this set of concerns represents one dimension of
our research framework, we briefly reiterate these in Section 2.1; a
more extensive description can be found in ref. [31]. Furthermore,
since crowdsourcing involves a number of actors, or stakeholders,
it is useful to take different stakeholder perspectives so as to study
crowdsourcing software development from different stakeholders’
views. We identified three different perspectives, namely that of
customers, workers and the platform representing an online ‘market

www.manaraa.com

place’ where customers and workers can meet and interact. These
perspectives are further described in Section 2.2. Together, these two
dimensions (stakeholders and concerns) define a two-dimensional
grid (see Table 1, which can serve as a research framework. Such a
framework can help in future research as it defines the boundaries
of an area that requires further study [29].

2.1 Concerns

2.1.1 Task Decomposition
Development of a significant software systems cannot be done by

a single person in a crowd. In order to benefit from a potentially large
crowd, the system should be split up into many small pieces that can
be developed in parallel by different developers in the crowd. This
raises an old question in software engineering, namely, how should
the system be decomposed into smaller modules without causing
problems in putting them back together once they are developed
[18, 20, 21]. Common questions in software engineering within
the scope of decomposition relate to assumptions, interfaces and
dependencies.

2.1.2 Coordination and Communication
While task decomposition is mainly concerned with the question

of how to decompose a system to be developed into manageable
chunks of work, coordination is concerned with the process of man-
aging the dependencies between these activities [23]. Coordination
is important to ensure that activities are performed in a timely fash-
ion and that together they achieve the ultimate goal of building a
system. To achieve this, communication is needed between the
developers and the customer.

2.1.3 Planning and Scheduling
With crowdsourcing, timely delivery of software implementations

becomes much more uncertain than when it is developed in-house,
or in ‘normal’ outsourcing scenarios where delivery is subject to
a negotiated contract. One potential benefit of crowdsourcing is a
quicker delivery as the work can be split up in smaller tasks which
can then be executed in parallel (see Section 2.1.1). On the other
hand, given that crowdsourcing competitions cannot really be expe-
dited once the deadline is set, it is not possible to intervene to achieve
faster delivery. Therefore, important questions in crowdsourcing
software development is related to how a timely delivery of a soft-
ware project can be guaranteed when portions are crowdsourced to
an unknown workforce.

2.1.4 Quality Assurance
Some crowdsourcing advocates claim that, given a large number

of submissions (from a large enough crowd), some submissions will
be of high quality [5, 27], thus addressing a key concern in software
engineering. Also, similar to Linus’s Law, namely that given a
sufficiently large group of people, there is bound to be someone who
knows how to fix a certain defect, a similar line of thinking would
argue that there is a wide variety of expertise available in the crowd.
In other words, whatever the software development task at hand,
there is bound to be someone who has sufficient domain expertise
to provide a solution to a given software development task.

2.1.5 Knowledge and Intellectual Property
Software development is a knowledge-intensive task, and knowl-

edge sharing and management plays an important part throughout
the software development lifecycle [2]. A key difference between
in-house development and traditional outsourcing scenarios on the
one hand, and crowdsourcing on the other hand is that the latter is
characterized by a possibly continuous turnover of workers [11].

2.1.6 Motivation and Remuneration
Motivation and remuneration are topics that have received sig-

nificant attention in the crowdsourcing literature [9, 12, 15, 17].
Crowdsourcing tasks on platforms such as Amazon’s Mechanical
Turk, sometimes referred to as ‘micro-tasks,’ tend to be very short in
duration, and only a small remuneration is offered for those, usually
less than one US dollar [19]. As software development tasks are
much more complex, one can no longer speak of micro-tasks as
they tend to be interdependent, long in duration (days/weeks as
opposed to seconds/minutes), and requiring a great deal of cognitive
effort. Therefore, remuneration for such complex tasks must be
significantly higher than micro-tasks. An important consideration
for a crowdsourcing customer is to decide on an appropriate remu-
neration that will attract sufficient participants to a crowdsourcing
contest. Furthermore, participants who have a lot of experience
with crowdsourcing may have a significant advantage over those
who are inexperienced, in that they may be more proficient with a
platform, and thus may be more likely to win a crowdsourcing con-
test. Whether or not this puts off inexperienced participants, to the
extent to ‘scare them away’ would be a concern for a crowdsourcing
customer as this reduces participation and may affect the number of
solutions offered.

2.2 Perspectives
Crowdsourcing software development generally involves three

types of actors [33]: customers, who have software development
work that needs to be done; workers, who participate in developing
software; and platforms, or brokers, who provide an online market
place where customers and workers can meet. Each of these three
actors will have a different perspective on crowdsourcing software
development. We briefly discuss them below.

2.2.1 Customers
Customers, or requesters, are organizations or individuals who

have software tasks that need to be done. Customers can have dif-
ferent motivations for crowdsourcing; for instance, an organization
may temporarily want to increase their workforce. By ‘outsourcing’
some of the work to the ‘crowd,’ an organization can become quite
flexible in scaling up and down their production capacity.

2.2.2 Workers
Workers are the individuals who perform the work–they develop

the chunks of software that are ‘outsourced’ by a customer. Little is
known about who these workers and there are many open questions
that would be of great interest. Some initial work has been done
on workers’ motivation, but we need a better understanding of why
participants engage in this ‘insecure’ form of employment. Further-
more, while ‘normal’ development jobs typically require certain
levels of formal education, little is known about the background of
crowdsourcing workers. Other considerations include the reliability
of workers, both in terms of customers being able to deliver prod-
ucts in a timely fashion, as well as careful consideration of product
specific knowledge and IP.

2.2.3 Platforms
Platforms provide an online ‘marketplace’ for workers and cus-

tomers to meet. The largest platform for crowdsourcing software
development is TopCoder, with a developer community of more
than 600,000 as of January 2014. However, there have also been
indications only a small fraction of its registered users are actually
participating in software development. Platforms may have different
participation models. TopCoder for instance uses a competition-
based model–in TopCoder’s model, the winner gets paid a certain

www.manaraa.com

 Customer Worker Platform

Task
decomposition

Coordination &
Communication

Planning &
Scheduling

Quality
Assurance

Knowledge & IP

Motivation &
Remuneration

!

B

A

C

Perspectives

F
a
c
e

ts

Figure 1: (A) a multi-facet/concern, single-stakeholder-
perspective study, (B) a single-facet/concern, multi-
stakeholder-perspective study, (C) a single-facet/concern,
single-stakeholder-perspective study.

prize, and the runner-up receives 50% of this prize. Furthermore,
TopCoder has other mechanisms to incentivize developers to partici-
pate. Inexperienced developers may belief they have little chance of
winning when competing with experienced participants in a contest.
To address this, TopCoder also has a ‘Digital Run,’ which is a way
to earn credits even when a participant does not win (see [31] for
more details).

3. USING THE FRAMEWORK
The proposed research framework offers a comprehensive view

on crowdsourcing as a form of outsourcing of software develop-
ment. Each of these six key concerns presents a ‘facet’ of software
development that requires further research to better understand how
crowdsourcing can be effectively applied to software development.
Furthermore, the three perspectives that have been recognized in
the wider crowdsourcing literature [33] offer a useful multi-view
lens on those concerns. Combined together, they offer a research
‘grid’ that can be used to define the scope of future research in this
area; Table 1 presents a number of example research questions that
we believe are worthy of further study. In what follows below, we
present a few examples of how the research framework can be used,
but other study designs are possible as well.

One study design for investigating crowdsourcing is a single-
perspective, multi-faceted study as we have recently reported in [31].
The design of this study is labelled ‘A’ in the research framework
shown in Figure 1. Our case study [31] describes a number of
challenges that one organization encountered.

Another study design can be constructed by applying a multi-
stakeholder perspective, single-concern/facet approach; this design
is labelled ‘B’ in Figure 1. Using this study design, the focus is on
only one of the concerns/facets identified in Section 2.1, but from
different stakeholder perspectives, namely from the customer’s, the
worker’s, and the platform’s perspective.

A third study design may focus on one particular facet/concern;
for instance, the study design labelled ‘C’ suggests that motivation
is studied from a worker’s perspective. Indeed, this is a topic that
has already attracted some interest [7, 34].

By systematically reusing this research framework, each ‘cell’
will become increasingly “populated” by different studies that apply
to that cell, by addressing one or more facets, studied by one or more
stakeholder perspectives. This in turn will facilitate a more straight-
forward comparison and synthesis of these studies in secondary

studies, such as systematic literature reviews, which have become
a widely adopted means to synthesize studies. One challenge in
conducting such secondary studies is that comparing studies that
were independently designed and grounded in a certain research
context is quite difficult.

4. CONCLUSION
While crowdsourcing has been used a technique to perform some

essential activities within software development (e.g., testing), very
few studies exist of using crowdsourcing as a sourcing strategy,
whereby the actual development of software is crowdsourced and
integrated into a final product. In order to guide future research
on this topic we have developed a two-dimensional research frame-
work. One dimension comprises six key concerns that we identified
from the literature on crowdsourcing, whereas the other dimension
comprises three different perspectives from the three main types of
stakeholders that can be observed in typical crowdsourcing scenar-
ios. We presented a number of potential research questions that we
believe are worthy of further study (see Table 1) and also showed
how different study designs can be constructed by selecting one
or more concerns and stakeholder perspectives. Besides designing
and positioning studies of crowdsourcing software development, the
framework can also be used to categorize and synthesize research
findings, for instance in future systematic literature reviews on this
topic.

5. ACKNOWLEDGMENTS
This work was supported, in part, by Science Foundation Ireland

grant 10/CE/I1855 to Lero–the Irish Software Engineering Research
Centre (www.lero.ie).

6. REFERENCES
[1] P. Ågerfalk and B. Fitzgerald. Outsourcing to an unknown

worforce: Exploring opensourcing as a global sourcing
strategy. MIS Quarterly, 32(2), 2008.

[2] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic. Managing
Software Engineering Knowledge. Springer, 2003.

[3] A. Begel, J. Bosch, and M. A. Storey. Social networking
meets software development: Perspectives from github, msdn,
stack exchange, and topcoder. IEEE Softw., 30(1), 2013.

[4] A. Begel, J. D. Herbsleb, and M.-A. Storey. The future of
collaborative software development. In CSCw, 2012.

[5] E. Bonabeau. Decisions 2.0: The power of collective
intelligence. MIT Sloan Manage Rev, 50(2):45–52, 2009.

[6] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci.
Choosing the right crowd: Expert finding in social networks.
In Proc. EDBT/ICDT, 2013.

[7] D. C. Brabham. Moving the crowd at istockphoto: The
composition of the crowd and motivations for participation in
crowdsourcing application. First Monday, 13(6), 2008.

[8] D. C. Brabham. Crowdsourcing. MIT Press, 2013.
[9] D. Chandler and A. Kapelner. Breaking monotony with

meaning: Motivation in crowdsourcing markets. Journal of
Economic Behavior & Organization, 90:123–133, 2013.

[10] L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A.
Landay. Cascade: Crowdsourcing taxonomy creation. In CHI.
ACM, 2013.

[11] L. Dabbish, R. Farzan, R. Kraut, and T. Postmes. Fresh faces
in the crowd: Turnover, identity, and commitment in online
groups. In CSCW, 2012.

www.manaraa.com

Table 1: Research Framework to Study Crowdsourcing Software Development and Example Questions.
Concern Customer Worker Platform

Task
decomposition

How to effectively decompose a sys-
tem for development by the crowd?

How to effectively contribute to de-
velopment of a large system without
being a formal member of a team?

How can platforms assist customers
in decomposing their software
projects into manageable chunks of
work?

Coordination
&
Communication

How to coordinate a group of un-
known developers without a direct
line of communication?

Can workers collaborate and com-
municate with other developers in
the crowd? How to effectively com-
municate with a customer?

What mechanisms can platforms put
in place to facilitate coordination and
communication between workers and
customers?

Planning &
Scheduling

How can a customer ensure a timely
delivery of the product given that so-
lutions are coming from an unknown
workforce and thus a schedule cannot
be enforced?

How can workers manage to spend
their time effectively in tending to
different customers?

How can platforms help customers in
‘predicting’ and ensuring timely de-
livery of a project based on previous
data?

Quality
Assurance

How to ensure that the quality of deliv-
erables from the crowd is sufficient?

What are best practices to effectively
satisfy customers?

What mechanisms should be in place
to ensure that the crowd submits high
quality solutions?

Knowledge &
IP

How to balance knowledge sharing
and protection of IP? How to trans-
fer knowledge to “short-term” work-
ers who represent an unknown work-
force?

What knowledge is needed to con-
tribute in a meaningful way?

What mechanisms should be in place
for effective knowledge sharing be-
tween customers and workers?

Motivation &
Remuneration

How to ensure that developers are mo-
tivated to participate and submit solu-
tions?

Why do developers participate?
Why participate when there is little
chance of winning?

What mechanisms can platforms of-
fer to incentivize potential contribu-
tors to participate?

[12] D. DiPalantino and M. Vojnovic. Crowdsourcing and all-pay
auctions. In 10th Conf. Electronic Commerce, 2009.

[13] E. Dolstra, R. Vliegendhart, and J. Pouwelse. Crowdsourcing
gui tests. In 6th International Conference on Software Testing,
Verification and Validation, 2013.

[14] L. B. Erickson, I. Petrick, and E. M. Trauth. Organizational
uses of the crowd: Developing a framework for the study of
crowdsourcing. In SIGMIS-CPR, 2012.

[15] S. Faridani, B. Hartmann, and P. G. Ipeirotis. What’s the right
price? pricing tasks for finishing on time. In AAAI Workshop
on Human Computation, 2011.

[16] L. Hetmank. Components and functions of crowdsourcing
systems–a systematic literature review. In 11th Int’l Conf.
Wirtchaftsinformatik, 2013.

[17] J. J. Horton and L. B. Chilton. The labor economics of paid
crowdsourcing. In Conference on Electronic Commerce, 2010.

[18] P. G. Ipeirotis and P. K. Paritosh. Managing crowdsourced
human computation. In WWW, 2011.

[19] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management
on amazon mechanical turk. In ACM SIGKDD Workshop on
Human Computation, pages 64–67, 2010.

[20] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut. Crowdforge:
Crowdsourcing complex work. In Proc. ACM Symposium on
User Interface Software and Technology. ACM, 2011.

[21] A. Kulkarni, M. Can, and B. Hartmann. Collaboratively
crowdsourcing workflows with turkomatic. In CSCW, 2012.

[22] T. D. LaToza, W. B. Towne, A. van der Hoek, and J. D.
Herbsleb. Crowd development. In Proc. CHASE, 2013.

[23] T. W. Malone and K. Crowston. The interdisciplinary study of
coordination. ACM Comput Surv, 26(1), 1994.

[24] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and
S. Ganguly. Leveraging the crowd: how 48,000 users helped
improve lync performance. IEEE Softw., 30(4), 2013.

[25] F. Pastore, L. Mariani, and F. G. Crowdoracles: Can the crowd
solve the oracle problem? In 6th Int’l Conf. Software Testing,
Verification and Validation, 2013.

[26] A. C. Rouse. A preliminary taxonomy of crowdsourcing. In
Australasian Conf. Information Systems, 2010.

[27] E. Schenk and C. Guittard. Crowdsourcing: What can be
outsourced to the crowd, and why?, 2009. HAL Working
Papers.

[28] E. Schenk and C. Guittard. Towards a characterization of
crowdsourcing practices. J Innovation Economics, 1(7), 2011.

[29] A. Schwarz, M. Mehta, N. Johnson, and W. Chin.
Understanding frameworks and reviews: A commentary to
assist us in moving our field forward by analyzing our past.
Database Adv Inform Syst, 38(3), 2007.

[30] K. Stol, P. Avgeriou, M. Babar, Y. Lucas, and B. Fitzgerald.
Key factors for adopting inner source. ACM Trans Softw
Engineer Methodol, Forthcoming, 2014.

[31] K. Stol and B. Fitzgerald. Two’s company, three’s a crowd: A
case study of crowdsourcing software development. In 36th
International Conference on Software Engineering, 2014.

[32] K. T. Stolee and S. Elbaum. Exploring the use of
crowdsourcing to support empirical studies in software
engineering. In Proc. ESEM, 2010.

[33] Y. Zhao and Q. Zhu. Evaluation on crowdsourcing research:
Current status and future direction. Inf Syst Front, April, 2012.

[34] Y. Zhao and Q. Zhu. Exploring the motivation of participants
in crowdsourcing contest. In ICIS, 2012.

